Edible Mushrooms: Improving Human Health and Promoting Quality Life

psilocybin edible mushrooms

María Elena Valverde,1 Talía Hernández-Pérez,1 and Octavio Paredes-López1Show moreAcademic Editor: Maurizio SanguinettiReceived09 Sep 2014Accepted29 Nov 2014Published20 Jan 2015


Mushrooms have been consumed since earliest history; ancient Greeks believed that mushrooms provided strength for warriors in battle, and the Romans perceived them as the “Food of the Gods.” For centuries, the Chinese culture has treasured mushrooms as a health food, an “elixir of life.” They have been part of the human culture for thousands of years and have considerable interest in the most important civilizations in history because of their sensory characteristics; they have been recognized for their attractive culinary attributes. Nowadays, mushrooms are popular valuable foods because they are low in calories, carbohydrates, fat, and sodium: also, they are cholesterol-free. Besides, mushrooms provide important nutrients, including selenium, potassium, riboflavin, niacin, vitamin D, proteins, and fiber. All together with a long history as food source, mushrooms are important for their healing capacities and properties in traditional medicine. It has reported beneficial effects for health and treatment of some diseases. Many nutraceutical properties are described in mushrooms, such as prevention or treatment of Parkinson, Alzheimer, hypertension, and high risk of stroke. They are also utilized to reduce the likelihood of cancer invasion and metastasis due to antitumoral attributes. Mushrooms act as antibacterial, immune system enhancer and cholesterol lowering agents; additionally, they are important sources of bioactive compounds. As a result of these properties, some mushroom extracts are used to promote human health and are found as dietary supplements.

1. Introduction

Mushrooms have been considered as ingredient of gourmet cuisine across the globe; especially for their unique flavor and have been valued by humankind as a culinary wonder. More than 2,000 species of mushrooms exist in nature, but around 25 are widely accepted as food and few are commercially cultivated. Mushrooms are considered as a delicacy with high nutritional and functional value, and they are also accepted as nutraceutical foods; they are of considerable interest because of their organoleptic merit, medicinal properties, and economic significance [12]. However, there is not an easy distinction between edible and medical mushrooms because many of the common edible species have therapeutic properties and several used for medical purposes are also edible [3].

The most cultivated mushroom worldwide is Agaricus bisporus, followed by Lentinus edodes, Pleurotus spp., and Flammulina velutipes. Mushrooms production continuously increases, China being the biggest producer around the world [145]. However, wild mushrooms are becoming more important for their nutritional, sensory, and especially pharmacological characteristics [2].

Mushrooms could be an alternative source of new antimicrobial compounds, mainly secondary metabolites, such as terpenes, steroids, anthraquinones, benzoic acid derivatives, and quinolones, but also of some primary metabolites like oxalic acid, peptides, and proteins. Lentinus edodes is the most studied species and seems to have an antimicrobial action against both gram-positive and gram-negative bacteria [6].

They have a great nutritional value since they are quite rich in protein, with an important content of essential amino acids and fiber, poor fat but with excellent important fatty acids content (Table 1). Moreover, edible mushrooms provide a nutritionally significant content of vitamins (B1, B2, B12, C, D, and E) [78]. Thus, they could be an excellent source of many different nutraceuticals and might be used directly in human diet and to promote health for the synergistic effects of all the bioactive compounds present [913].Table 1 Proximal composition of some edible mushrooms (dry basis).

A large variety of mushrooms have been utilized traditionally in many different cultures for the maintenance of health, as well as in the prevention and treatment of diseases through their immunomodulatory and antineoplastic properties. In the last decade, the interest for pharmaceutical potential of mushrooms has been increased rapidly, and it has been suggested that many mushrooms are like mini-pharmaceutical factories producing compounds with miraculous biological properties [514]. In addition, the expanded knowledge of the molecular basis of tumorigenesis and metastasis has given the opportunity for discovering new drugs against abnormal molecular and biochemical signals leading to cancer [15].

More than 100 medicinal functions are produced by mushrooms and fungi and the key medicinal uses are antioxidant, anticancer, antidiabetic, antiallergic, immunomodulating, cardiovascular protector, anticholesterolemic, antiviral, antibacterial, antiparasitic, antifungal, detoxification, and hepatoprotective effects; they also protect against tumor development and inflammatory processes [1619]. Numerous molecules synthesized by macrofungi are known to be bioactive, and these bioactive compounds found in fruit bodies, cultured mycelium, and cultured broth are polysaccharides, proteins, fats, minerals, glycosides, alkaloids, volatile oils, terpenoids, tocopherols, phenolics, flavonoids, carotenoids, folates, lectins, enzymes, ascorbic, and organic acids, in general. Polysaccharides are the most important for modern medicine and β-glucan is the best known and the most versatile metabolite with a wide spectrum of biological activity [5161720].

A balanced diet is the supporting treatment for the prevention of illness and especially against oxidative stress. In this context, mushrooms have a long history of use in the oriental medicine to prevent and fight numerous diseases. Nowadays, mushroom extracts are commercialized as dietary supplements for their properties, mainly for the enhancement of immune function and antitumor activity [3911172126]. In this work, we aimed to review the nutritional value as well as the chemical and nutraceutical composition, and commercial potentialities of the most cultivated edible mushrooms worldwide.

2. Findings and Discussion

2.1. Nutritional Value

The nutritional value of edible mushrooms is due to their high protein, fiber, vitamin and mineral contents, and low-fat levels [810]. They are very useful for vegetarian diets because they provide all the essential amino acids for adult requirements; also, mushrooms have higher protein content than most vegetables. Besides, edible mushrooms contain many different bioactive compounds with various human health benefits [2728].

It is important to remark that the growth characteristics, stage and postharvest condition may influence the chemical composition and the nutritional value of edible mushrooms. Also, great variations occur both among and within species [2930]. Mushrooms contain a high moisture percentage that ranges between 80 and 95 g/100 g, approximately. As above mentioned, edible mushrooms are a good source of protein, 200–250 g/kg of dry matter; leucine, valine, glutamine, glutamic and aspartic acids are the most abundant. Mushrooms are low-calorie foods since they provide low amounts of fat, 20–30 g/kg of dry matter, being linoleic (C18:2), oleic (C18:1) and palmitic (C16:0) the main fatty acids. Edible mushrooms contain high amounts of ash, 80–120 g/kg of dry matter (mainly potassium, phosphorus, magnesium, calcium, copper, iron, and zinc). Carbohydrates are found in high proportions in edible mushrooms, including chitin, glycogen, trehalose, and mannitol; besides, they contain fiber, β-glucans, hemicelluloses, and pectic substances. Additionally, glucose, mannitol, and trehalose are abundant sugars in cultivated edible mushrooms, but fructose and sucrose are found in low amounts. Mushrooms are also a good source of vitamins with high levels of riboflavin (vitamin B2), niacin, folates, and traces of vitamin C, B1, B12, D and E. Mushrooms are the only nonanimal food source that contains vitamin D and hence they are the only natural vitamin D ingredients for vegetarians. Wild mushrooms are generally excellent sources of vitamin D2 unlike cultivated ones; usually cultivated mushrooms are grown in darkness and UV-B light is needed to produce vitamin D2 [382934].

2.2. Nutraceuticals

In addition to the nutritional components found in edible mushrooms, some have been found to comprise important amounts of bioactive compounds. The content and type of biologically active substances may vary considerably in edible mushrooms; their concentrations of these substances are affected by differences in strain, substrate, cultivation, developmental stage, age, storage conditions, processing, and cooking practices [810].

The bioactive substances found in mushrooms can be divided into secondary metabolites (acids, terpenoids, polyphenols, sesquiterpenes, alkaloids, lactones, sterols, metal chelating agents, nucleotide analogs, and vitamins), glycoproteins and polysaccharides, mainly β-glucans. New proteins with biological activities have also been found, which can be used in biotechnological processes and for the development of new drugs, including lignocellulose-degrading enzymes, lectins, proteases and protease inhibitors, ribosome-inactivating proteins, and hydrophobins [35].

In China, many species of edible wild-grown mushrooms, that is Tricholoma matsutake, Lactarius hatsudake, Boletus aereus, are appreciated as food and also in traditional Chinese medicine. The rich amount of proteins, carbohydrates, essential minerals, and low energy levels contributes to considering many wild-grown mushrooms as good food for the consumer, which can virtually be compared with meat, eggs, and milk [36].

Numerous bioactive polysaccharides or polysaccharide-protein complexes from medicinal mushrooms appear to enhance innate and cell-mediated immune responses and exhibit antitumor activities in animals and humans. A wide range of these mushroom polymers have been reported previously to have immunotherapeutic properties by facilitating growth inhibition and destruction of tumor cells. Several of the mushroom polysaccharide compounds have proceeded through clinical trials and are used extensively and successfully in Asia to treat various cancers and other diseases. A total of 126 medicinal functions are thought to be produced by selected mushrooms [37].

2.2.1. Carbohydrates

Polysaccharides are the best known and most potent mushroom derived substances with antitumor and immunomodulating properties. Data on mushroom polysaccharides have been collected from hundreds of different species of higher basidiomycetes; some specific carbohydrates with these properties have been quantified in different mushrooms: rhamnose, xylose, fucose, arabinose, fructose, glucose, mannose, mannitol, sucrose, maltose, and trehalose (Table 2) [11153839].Table 2 Composition of sugars of some edible mushrooms (dry weight).

The antitumor polysaccharides isolated from mushrooms are acidic or neutral, with strong antitumor action and differ significantly in their chemical structures. A wide range of glycans extending from homopolymers to highly complex heteropolymers exhibits antitumoral activity. Mushroom polysaccharides have antitumor action by activation of the immune response of the host organism, in other words, mushroom polysaccharides do not directly kill tumor cells. These compounds prevent stress on the body and they may produce around 50% reduction in tumor size and prolong the survival time of tumor bearing mice [3940].

β-glucans are the main polysaccharides found in mushrooms and around half of the fungal cell wall mass is constituted by β-glucans. This is important for the industry because many of them are excreted into the cell growth medium, making their recovery, purification and chemical characterization very simple [4143]. β-glucans are responsible for anticancer, immunomodulating, anticholesterolemic, antioxidant, and neuroprotective activities of many edible mushrooms. Also, they are recognized as potent immunological stimulators in humans, and it has been demonstrated their capacity for treating several diseases. β-glucans bind to a membrane receptor and induce these biological responses [4447].

Natural products with fungal β-glucans have been consumed for thousands of years and they have long been considered to improve general health [48]. β-glucans are not synthesized by humans and they are not recognized by human immune systems as self-molecules; as a result they induce both innate and adaptive immune responses [49]. Fungal β-glucans are notably beneficial to humans; they markedly stimulate the human immune system and protect from pathogenic microbes and from harmful effects of environmental toxins and carcinogens that impaired immune systems. They also protect from infectious diseases and cancer and aid patients recovery from chemotherapy and radiotherapy. Besides, these compounds are also beneficial to middle-age people, people with active and stressful lifestyles, and athletes. A large variability can be observed in mushroom species and their concentration ranges from 0.21 to 0.53 g/100 g dry basis [2050].

β-glucans are well known for their biological activity, specifically related to the immune system. Hence, activating and reinforcing the host immune system seem to be the best strategy for inhibiting the growth of cancer cells [1751].

2.2.2. Proteins

Bioactive proteins are an important part of functional components in mushrooms and also have great value for their pharmaceutical potential. Mushrooms produce a large number of proteins and peptides with interesting biological activities such as lectins, fungal immunomodulatory proteins, ribosome inactivating proteins, antimicrobial proteins, ribonucleases, and laccases [52].

Lectins are nonimmune proteins or glycoproteins binding specifically to cell surface carbohydrates and in the past few years many mushroom lectins have been discovered [53]. They have many pharmaceutical activities and possess immunomodulatory properties, antitumoral, antiviral, antibacterial, and antifungal activity. Some of them exhibit highly potent antiproliferative activity toward some tumor cell lines (human leukemic T cells, hepatoma Hep G2 cells, and breast cancer MCF7 cells) [5254].

Fungal immunomodulatory proteins are a new family of bioactive proteins isolated from mushrooms, which have shown a potential application as adjuvants for tumor immunotherapy mainly due to their activity in suppressing tumor invasion and metastasis [55]. Xu et al. [52] published an extensive and comprehensive review about bioactive proteins in mushrooms.

2.2.3. Lipids

Polyunsaturated fatty acids are mostly contained in edible mushrooms; thus, they may contribute to the reduction of serum cholesterol. It is noteworthy that transisomers of unsaturated fatty acids have not been detected in mushrooms (Table 3) [39]. The major sterol produced by edible mushrooms is ergosterol, which shows antioxidant properties [3]. It has been observed that a diet rich in sterols is important in the prevention of cardiovascular diseases [29].Table 3 Fatty acids content of some edible mushrooms.

Tocopherols, found in the lipidic fraction, are natural antioxidants because they act as free radical scavenging peroxyl components produced from different reactions. These antioxidants have high biological activity for protection against degenerative malfunctions, cancer, and cardiovascular diseases. Linoleic acid, an essential fatty acid to humans, takes part in a wide range of physiological functions; it reduces cardiovascular diseases, triglyceride levels, blood pressure, and arthritis [11303856].

2.2.4. Phenolic Compounds

Phenolic compounds are secondary metabolites possessing an aromatic ring with one or more hydroxyl groups, and their structures can be a simple phenolic molecule or a complex polymer. They exhibit a wide range of physiological properties, such as antiallergenic, antiatherogenic, anti-inflammatory, antimicrobial, antithrombotic, cardioprotective, and vasodilator effects. The main characteristic of this group of compounds has been related to its antioxidant activity because they act as reducing agents, free radical scavengers, singlet oxygen quenchers, or metal ion chelators [113857].

Phenolic compounds provide protection against several degenerative disorders, including brain dysfunction, cancer, and cardiovascular diseases. This property is related to their capacity to act as antioxidants; they can scavenge free radicals and reactive oxygen species. The process of oxidation is essential for living organisms; it is necessary for the production of energy. However, the generation of free radicals has been implicated in several human diseases. The phenolic compounds in mushrooms show excellent antioxidant capacity [175861].

Palacios et al. [62] evaluated total phenolic and flavonoid contents in eight types of edible mushrooms (Agaricus bisporus, Boletus edulis, Calocybe gambosa, Cantharellus cibarius, Craterellus cornucopioides, Hygrophorus marzuolus, Lactarius deliciosus, and Pleurotus ostreatus). These authors concluded that mushrooms contain 1–6 mg of phenolics/g of dried mushroom and the flavonoid concentrations ranged between 0.9 and 3.0 mg/g of dried matter; the main flavonoids found were myricetin and catechin. B. edulis and A. bisporus presented the highest content of phenolic compounds, while L. deliciosus showed a high amount of flavonoids and A. bisporus, P. ostreatus, and C. gambosa presented low levels. Heleno et al. [38] reported protocatechuic, p-hydroxybenzoic, p-coumaric and cinnamic acids in the phenolic fraction in five wild mushrooms from northeastern Portugal.

2.3. Main Edible Mushrooms Worldwide
2.3.1. Agaricus

A. bisporus, from the Agaricus genera, is the most cultivated mushroom worldwide (Figure 1). This group of edible mushrooms is nowadays widely used and studied for its medicinal and therapeutic properties [406364].

Figure 1 Agaricus species, the most cultivated mushroom worldwide.

A lectin from A. bisporus and a protein from A. polytricha have been found to be potent immune stimulants; thus, these macromolecules may be considered for pharmaceutical utilization and these fungi may be classified as healthy food. A. bisporus extract has been shown to prevent cell proliferation in breast cancer [56566].

A. blazei is an edible mushroom native to Brazil and it has been cultivated especially in Japan. It is a very popular basidiomycete known as “sun mushroom,” and at these days it is consumed globally as food or in tea due to its medicinal properties. Its fruit bodies exhibit antimutagenic, anticarcinogenic, and immunostimulative activities [6768]; its extracts have also shown immunomodulatory, anticarcinogenic, and antimutagenic properties [69]. Additionally, it has been reported that this mushroom blocks the liver lipid peroxidation.

Al-Dbass et al. [70] concluded that A. blazei is a natural source of antioxidant compounds and has hepatoprotective activities against liver damage. On the other hand, Hakime-Silva et al. [67] reported that the aqueous extract of this fungus is a possible source of free radical scavengers and stated that this fungus can be used as a pharmacological agent against oxidative stress and as a nutritional source. Also, it is known that this fungus is rich in β-glucans, steroids, tocopherols, and phenolic compounds [306371].

Moreover, liquid extracts of this fungus inhibit cell proliferation in prostate cancer cells and oral supplementation suppressing significantly tumor growth without inducing adverse effects. A. blazei has been used as an adjuvant in cancer chemotherapy and various types of antileukemic bioactive components have been extracted from it [567].

In 2013, Carneiro et al. [22] reported powder formulations from A. blazei and L. edodes with proteins, carbohydrates, and unsaturated fatty acids. These formulations may be used in low-calorie diets and have shown high antioxidant activity with high content of tocopherols and phenolic compounds. In view of the previous studies, this fungus has been used as a healthy food for the prevention of a range of illnesses including cancer, diabetes, arteriosclerosis, and chronic hepatitis [7072].

A. subrufescens is called the “almond mushroom” for its almond taste, and it is cultivated in the US and has been incorrectly referred as A. blazei. It produces various bioactive compounds that have potential to treat many diseases and has been used as a medicinal food for the prevention of cancer, diabetes, hyperlipidemia, arteriosclerosis, and chronic hepatitis. Some of its beneficial properties are the reduction of tumor growth, antimicrobial and antiviral activities, immunostimulatory and antiallergy effects. The bioactive compounds isolated from this mushroom are mainly based on polysaccharides such as riboglucans, β-glucans, and glucomannans. The antitumor activity has been found in lipid fractions, that is, ergosterol [637273].

2.3.2. Lentinus

L. edodes or “shiitake mushroom” has been used for many years to investigate functional properties and to isolate compounds for pharmaceutical use; this is because of its positive effects on human health (Figure 2). It has been utilized to alleviate the common cold for hundreds of years and some scientific evidence has supported this belief [8]. Finimundy et al. [17] have provided experimental information about the aqueous extracts of L. edodes as potential sources of antioxidant and anticancer compounds. These extracts significantly decreased cell proliferation on tumor as well.

Leave a Reply

Your email address will not be published.